Experimenting with math notation
∑ n = 0 ∞ x n n ! {\displaystyle \sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}}
x1 x2 x3
x1 x2 x3 or x¹ x² x³
sin x + ln y {\displaystyle \sin x+\ln y} sinx + lny
x = 0 {\displaystyle \mathbf {x} =0} x = 0